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Abstract

We build a two-sector production-based asset pricing model in which the Al sector
provides computation to the general goods sector. The general goods sector applies
computation on data to create an Al agent that is a substitute for human labor.
Data are a by-product of general goods production and are owned by the general
goods sector. Our model shows that the progress of Al, in the form of an increase
of productivity or elasticity of substitution (EIS), drives up the production, profit,
and the participant of Al agent in economy. However, the increase in EIS drives
up the demand for Al computation and drives down the labor demand, while the
increase of Al productivity drives up the supply of Al computation and drives down
the labor supply. Positive technological shocks depress the sector valuations of two
sectors, while driving up wages. In addition, these shocks crowd out data-related
investments in the general goods sector. Our model rationalizes recent empirical
tindings linking Al development, data economies, and labor market outcomes and
provides new insights into the implications of "DeepSeek shocks", episodes of sudden
productivity leaps driven by algorithmic breakthroughs.
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I. INTRODUCTION

Artificial intelligence (Al) exerts a significantly greater influence on labor markets and
data utilization compared to past industrial revolutions. In the labor market, the rapid
expansion of the Al sector has driven significant labor reallocation towards activities
focused on training, labeling, validating, and maintaining Al systems. In addition,
general-purpose Al agents increasingly substitute human labor, marking a notable shift
from earlier technologies that primarily complemented human efforts. In terms of data
usage, Al's performance heavily relies on continuous access to high-quality, specialized
data. Consequently, acquiring appropriate datasets and developing expertise in fine-
tuning or prompt engineering have become critical for achieving effective and productive
outcomes with the Al algorithm.

We develop a model to study how generative Al affects production, labor allocation,
and asset valuation in the economy. In the static framework, both the general goods sector
and the Al computation sector operate under Cobb-Douglas production technologies
using capital and labor as inputs. In addition to hiring human labor, firms in the
general goods sector purchase Al computation services from the Al sector and apply
them to their proprietary data to create Al agents, which act as partial substitutes for
labor. Labor is freely mobile across the two sectors, allowing endogenous reallocation in
response to changes in technology and prices. On the dynamic side, the model features
endogenous investment in both capital and data, capturing the feedback loop between
data accumulation and Al productivity. The value of each sector and the allocation of
resources are jointly determined by solving a social planner problem, which internalizes
the dynamic externalities associated with the use of data and the development of Al

We consider two types of Al progress. One is the increase in productivity, which
means that the Al sector could produce the same quality and the same quantity of
computation. Another is the increase in elasticity of substitution (EIS) between labor
and the Al agent, which means that the Al agent performs better in various tasks in
production activities. Both drive up the participant of Al agent in economy and then
drive up production and profit. However, two types of Al advances have different
impacts on labor and computation markets. The increase in EIS drives the demand for
Al computation and drives the demand for labor. As a consequence, the wage and the
amount of labor in the work decrease. In contrast, the increase of Al productivity drives
the supply of Al computations up, which causes the price of Al computation to go down,



and the wage to rise.

Our dynamic model illustrates that positive technological shocks depress the sector
valuations of two sectors. This implication aligns with the intricate impact of "DeepSeek
shocks", major algorithmic breakthroughs that drastically lower Al training costs. Al-
though these improvements seem unequivocally beneficial to Al-sector firms, a striking,
counterintuitive result emerges: intensified competition may drive down long-term
profitability, ultimately reducing Al-sector valuations. In contrast, because the general
goods sector is only indirectly exposed to Al disruptions, it experiences comparatively
moderate declines in the sector value. As Al training costs fall, labor flows to the expand-
ing Al sector, driving wages persistently above baseline levels. In addition, incremental
gains in Al efficiency can stifle demand for structured data and crowd out data-related
investments in the general goods sector.

The implications of our model align with recent empirical findings in the labor
market. Acemoglu et al. (2022) observe that establishments adopting Al technologies tend
to reduce hiring in non-Al roles while increasing recruitment for Al-specific positions,
indicating a shift in labor demand. This substitution effect between Al agents and human
labor is further supported by studies such as Hartley et al. (2024) and Eisfeldt et al.
(2023) , which analyze the impact on the labor market of generative Al and Auer et al.
(2024), which explore the role of Al in substituting human labor in various occupations.
Furthermore, Hartley et al. (2024) showed that LinkedIn data reveal a significant increase
in employment within Al-focused companies such as OpenAl, Anthropic, and Google
DeepMind. In contrast, firms in the general goods sector are reducing the hiring of roles
that can be replaced by Al agents, as documented by Hui et al. (2024).

Our integrated perspective on data and generative Al is informed by recent empirical
tindings that offer novel insights into the data economy. Eisfeldt et al. (2023) found that
firms with greater exposure to Al technologies often possess substantial data assets, and
this combination significantly explained abnormal stock returns following the release
of GPT-3.5. Our framework provides an alternative interpretation of empirical results
concerning the data economy. For instance, the higher premiums associated with a
greater proportion of data scientists within firms, as documented by Corhay et al. (2023),
can be attributed to increased exposure to productivity risks in the Al sector when a firm
holds extensive data assets.

Data are becoming a standard input in a production function. For example, studies
by Cong et al. (2021), Cong et al. (2022), Chang et al. (2023), and Chang et al. (2024)



explored various dimensions of how data contribute to production processes. Jones and
Tonetti (2020) highlighted the non-rivalry nature of data in production separating them
from traditional inputs like labor and capital. Farboodi and Veldkamp (2021) presented
a framework in which data, generated through transactions, serve as an intangible asset
that influences firm productivity and economic growth.

Our work builds on a growing body of research investigating how artificial intel-
ligence (Al) transforms firms, industries, and economies through multiple channels,
from shifts in knowledge production to changes in labor markets and strategic decision-
making. A foundational contribution by Abis and Veldkamp (2024) examines how the
economics of knowledge production evolves in the face of accelerating technological
innovation, emphasizing the increasingly central role of Al in shaping research and de-
velopment dynamics. Complementing this perspective, Babina et al. (2024) document a
strong association between Al adoption and firm-level growth and innovation outcomes,
while earlier work by Babina et al. (2022) reveals how the composition of the workforce
adjusts in response to Al-driven transformations, highlighting the reallocation of human
capital within firms. In terms of financial markets, Eisfeldt et al. (2023) provides novel
evidence on the implications of generative Al valuation, showing how frontier technolo-
gies can shape corporate strategies and influence asset prices. From a theoretical point
of view, Farboodi and Veldkamp (2021) develop a data economy model to explore the
dynamic interaction between data availability, insight generation, and market growth.
Building on the literature on technological diffusion, Zhang (2024b) extend the model of
Pastor and Veronesi (2009) by incorporating habit formation into AI adoption decisions,
offering a framework for understanding heterogeneity in adoption patterns. Relatedly,
Jones (2024) examines how these adoption dynamics feed into broader macroeconomic
and asset pricing implications, particularly in the context of a rapidly digitizing economy.
At the societal level, recent work grapples with the uncertainty and risks posed by rapid
technological change. Jones (2024) explores the tension between Al-driven economic
acceleration and the possibility of catastrophic outcomes, a concern echoed in Chow et al.
(2024), who link existential risks to changes in long-term real interest rates. Meanwhile,
Zhang (2024a) highlights the unequal access to data and Al technologies as a source of
long-term inefficiency and social cost, calling for well-designed regulatory interventions
to ensure inclusive and sustainable innovation. Collectively, these studies underscore
both the transformative potential of Al and the profound economic, organizational, and
social challenges it presents. Realizing the full value of Al will require not only continued
innovation, but also informed policy design, robust regulatory frameworks, and strategic



investments aimed at managing risk and ensuring broad-based benefits.

In sum, this paper develops the first theoretical model that explains how generative
Al affects the economy. In addition to capturing empirical results, we give a prediction
of how the economy will behave with future AI advances. Conceptually, it extends the
‘data economy’ framework of Farboodi and Veldkamp (2021) by treating Al computation
and data as integrated inputs, and broadens Hansen et al. (2024) endogenous production-
based asset pricing. The predictions of the model are aligned with recent empirical
findings and yield novel testable implications for future research. A natural direction for
turther theoretical work is to introduce heterogeneous firms within each sector.

II. GENERATIVE Al IN ECONOMY

Generative Al agent is an autonomous Al-driven system that perceives its environment,
makes decisions, and executes actions to achieve specified goals with minimal human
intervention, leveraging underlying generative Al models to enable flexible general-
purpose reasoning and behavior. Two features distinguish generative Al: general purpose
nature and autonomy. On the one hand, general purpose means that generative Al
can possess a wider range of capabilities than traditional prediction-based models,
challenging economic frameworks that view Al primarily as a tool for improve prediction
accuracy (Baley and Veldkamp (2025)). This general-purpose capacity also means that
generative Al needs task-specific data and information to function effectively in specific
real-world production tasks. On the other hand, Its autonomy allows it to learn from past
experience ('learning by doing’), utilize external tools to broaden its functionality, and
design plans for achieve goals with minimal human guidance. Those capabilities have
traditionally been seen as unique human skills. Now that generative Al can replicate
these processes, it can serve as a closer substitute for human labor in tasks that require
creativity, reasoning, and adaptability.

Generative Al represents a distinct sector that provides advanced Al computations
to the broader economy. Al companies (e.g. NVIDIA, OpenAl) specialize in building,
training, and refining large-scale models, then providing access to their computing
power and Al services to general goods firms. Because developing these models requires
substantial resources, such as massive GPU infrastructure, expert knowledge, and high-
quality datasets, most general goods firms find it prohibitively expensive to handle
in-house. In contrast, before the rise of large language models (LLMs), machine learning



algorithms were largely open source, and the requirements for compute and data were
modest enough that individual firms could train or fine-tune models internally. The
algorithms or the necessary human capital were owned outright by the general goods
tirms, which form part of their intangible assets. Now, the shift toward complex, resource-
intensive models has positioned specialized Al firms as key external providers of these
capabilities.

A concise example can be seen in customer support: a firm can outsource its Al
needs to a provider like OpenAl, paying for usage (e.g. per token) rather than investing
in costly, large-scale model development. The firm supplies its proprietary data, such as
product details and policy documents, which the AI uses to generate customer-tailored
responses. Operating with minimal human oversight, the system autonomously retrieves
relevant information, creates explanations, and solves issues, effectively replicating the
role of a service agent. This real-world application illustrates how the general-purpose
reach and independent operation of generative Al are reshaping production processes
and labor dynamics in industries.

We make two main assumptions about generative Al in our production economy:
(1) the Al sector is a separate sector; (2) the Al agent is the substitute of human labor.
Symbolically, we model the labor input of the general goods sector as a composite of real
human labor (L¢) and Artificial Intelligence agent (IL),

1-p
7

L= (L) + (-] 7,

, where Al agent IL is formed by combining data (D) from general goods sector and Al
computation (X) from Al sector:
L = DX'.

Data D are defined as the stock of data-related investments that enable firms to take
advantage of Generative Al computation. This includes not only structured datasets, but
also the data scientists who manage them and the hardware required to store and process
them. Following Farboodi and Veldkamp (2021), we treat the data as the by-product of
production owned by producers of general goods and employed in the production of
consumption goods. While they conceptualizes data as “fuel” for predictive Al tasks,
we explicitly incorporate data into the production function by combining data with
Al computation as Al agent substituting human labor to capture the general purpose
feature.



The labor should be understood as less knowledgeable or lower skilled workers
that do not need a long time training to be functional in production. The evolution of
knowledgeable labor is more like capital which has adjustment cost and depreciation. In
our economy, we incorporate the knowledgeable labor as human capital into the capital
K, and K. Especially, we separate knowledgeable workers dealing with the adoption of
Al in the general goods sector from capital K, as the data D to investigate and highlight
the data in the Al economy.

III. Static Al EconomYy MODEL

In this section, we build a static equilibrium model to investigate the impact of Al on
labor and production under equilibrium conditions.

IIl.a. Economy Settings

Consider an economy composed of two production sectors: the Al sector (2) and the
general goods sector (g). Each sector utilizes labor and capital, with fixed capital stocks
for static analysis. Labor is frictionlessly allocated between sectors, with L, representing
labor in the AI sector and L, in the general goods sector. The Al sector produces
computations using capital K, and labor L, following the production function:

X = ZKeL1%,

where Z is the productivity of the Al sector. The general goods sector purchases the
computations at a price p and uses them with the data D to build the Al agent IL
that is a substitute for labor. The Al agent is modeled as the combination of data and
computations:

L =DX'"°,
where D is the structured data that can be used in Al computing.

The general goods sector produces consumption goods Y using both human labor
and the Al agent as substitutable inputs. The Labor input of general production should
be a composite of real human labor and artificial labor:

L =[]+ (1- L7,



where | determines the relative weight of traditional labor versus Al-based labor. The
production function is given by:

Y = AKGL'P,
The profits for the general goods sector and the Al sector are:

Il =Y —wLe — pX, (1)
1, = pX — wL,. (2)

In equilibrium, both the labor market and the AI computation market are clearing. Two
sectors maximize both profits and solve for optimal labor, computation allocations, and
productions. The price of Al computation is denoted as p, and the competitive wage is
denoted as w. The labor market is assumed to be frictionless, ensuring that the marginal
product of labor is equalized across both sectors. The first order conditions are

General Goods Sector (FOC for Lg)

oIl Lo\”
Sy (1B (=8 -1 =
I, Y- (1-B) ( L) L' —w=0.

The total wage wL, paid to the labor is a (1 — )i (%) ! portion of the total production
Y in the general goods sector.

General Goods Sector (FOC for Computation X to determine p)

oIl L\"
TXora-pa-gu-o () xt-p-o

The total computation payment pX paid to the Al sector is (1 —g)(1—)(1—8) (£)” a
portion of total production Y in the general goods sector.

Al Sector (FOC for L,)

I (1—a)pXL,! —w = 0.

The total wage wL, paid to the labor is (1 — &) a portion of the computation revenue pX
in the Al sector.



Household Optimization We follows the settings of labor suggested by Papanikolaou
(2011). The total labor supply is normalized to unity and is distributed between these
sectors and leisure (N):

1=L,+Lg+N.

We assume that labor is frictionlessly allocated to two sectors and leisure time. House-
holds derive utility from consumption and leisure, with the utility function:

V =1log(CNY),

where all production is used for consumption. The optimal trade-off between labor and
leisure is determined by equating the marginal utility of leisure (in terms of consumption)
to the marginal utility of consumption, leading to:

1oV _av
woN  aC’
This condition implies that the labor supply satisfies:

C

Prices of Capital and Data The shadow prices of capitals and data are given by the
derivative of profits. In essence, the shadow price of a factor measures how much
the firm’s profit would increase if that factor were marginally higher while keeping
everything else constant. We denote these shadow prices by Vi, for the capital of general
goods, Vi, for the capital of the Al sector, and Vp for data.

A, Y
VKg = _aKg — ‘BK_g’ (3)
oI, X L\7Y
Vi, = G ok —ai-pia-na-o) (§) ¢ @
oI, L\" Y
Vp = === (1-p)(1-1)8 (f) D (5)

These results collectively show that the shadow price of each factor increases when
it is used more intensively when the corresponding share parameter (e.g. B, a, or 6) is
larger. If, in a dynamic model, K¢, K,;, and D accumulate over time, the planner or the
tirms would tend to invest more in whichever factor has the highest shadow price. For
example, if 1 — ¢ is large, then the marginal values of K,; and D become higher, providing

9



i
incentives to investment in the Al sector. The term (%) captures how intensively

Al-labor is being used relative to total labor (including human labor). As Al becomes
more prevalent, namely IL increases relative to L, the marginal products of Al-related
factors K, and D increase.

The three shadow prices (VK o Vo VD) reflect the instantaneous marginal value of
each fixed factor in the production of final consumption goods. If these factors could
be reallocated or accumulated, their equilibrium levels would increase to equalize these
marginal values (up to costs), leading to stable ratios among K¢, K;, and D in the long
run. If the number of one factor, say D, is below the stable number, the price Vp would
be higher than others and planners would invest more in data. These intuitions are also
shown in the dynamic model.

III.b. Model Results

In this section, we examine the effects of Al progress on the economy in equilibrium by

considering two key developments. First, as Al agents become increasingly intelligent,
1

% m/

(Lg) and Al agents (IL) increases. Second, improvements in the efficiency and productivity

the elasticity of substitution between traditional labor in the general goods sector
of the Al sector, indicated by Z, allow it to deliver the same level of computational output
while using less capital and labor. Moreover, we investigate the adoption of Al within the
general goods sector, where such adoption is quantified by the amount of data available
for Al computing, represented by D. Consequently, we characterize the equilibrium
conditions as functions of the parameters <y, Z, and D. An alternative to thinking about
Al progress is the increase in the intensity of the Al agent of production 1 — 1, which is
the way economic historians think about the Industrial Revolution as an increase in the
capital intensity of production.

In the following results, we focus on a calibration in which the simulation parameters
are given by

x=05 =01, (=05 B=03 6=05 ¢=1

which are “safe” guesses in the absence of direct estimations. We set the initial capitals,
data and productivity to be



The productivity of the Al sector is much higher than that of the general goods sector to
show the scalability of AI computation.
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Figure IIL.1: Al Impact on Labor Market

Analysis of Figure Varying <y (Elasticity of substitution)

We explain the empirical findings regarding the release of GPT-3.5 by highlighting
changes in <, which measures the extent to which AI agents can replace human workers.
In line with FEisfeldt et al. (2023), who document that firms with greater exposure to
Generative Al exhibit higher abnormal returns and profits following GPT’s release—and
that occupations more exposed to Generative Al see fewer job postings and lower
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wages—our model generates precisely the same patterns. Specifically, an increase in vy
raises the shadow prices of data D and the capital of the Al sector, increases profitability
in both the Al and general goods sectors, drives wages downward, and reduces aggregate
labor demand. Notably, the decline in labor demand within the larger general goods
sector more than offsets any gains in Al-sector employment.

Beyond these empirical observations, our model predicts an additional phenomenon:
the price of Al computation increases after the release of GPT 3.5. This outcome comes
from the partial "training" barter Baley and Veldkamp (2025), in which users effectively
“pay” for Al services with their feedback during the Reinforcement Learning from
Human Feedback (RLHF) stage. As the number of ChatGPT users increases, so does
the demand for Al computations, putting upward pressure on its price. The mechanism
is straightforward: A higher o implies greater substitutability between Al agents (IL)
and human labor (Lg). As a result, firms in the general goods sector purchase more Al
computation to replace costlier human labor, raising Al-sector profits and dampening
overall wage and employment levels. Because these effects are monotonic in vy, greater
exposure to Al - that is, larger - - naturally entails higher AI computation prices, greater
profitability, lower wages, and reduced job postings.

Analysis of Figure Varying Z (Algorithm Improvement)

Improvements in Z imply that the Al sector requires fewer inputs to produce a given
level of Al computation. With the increases of Al productivity, general goods sector
adopt more Al agent related to total labor input L. The production and profits of general
goods sector, in consequence, go up as general goods sector adopt more Al agent as labor
input at a lower cost. These results align with Babina et al. (2024) which suggests that
tirms that utilize Al tend to experience faster growth in sales, productivity and profits.

Unlike changes in 1, these changes in Z do not significantly affect labor demand.
However, the shadow price of data increases at a lower rate as the slope of Vp w.r.t
Z is decreasing, suggesting that general goods firms will invest less aggressively in
collecting structured data and hiring data scientists when Z increases. This align with
the crowd-out effect showed in our dynamic model.

Our model is also consistent with the model and empirical findings of Hampole
et al. (2025), who identify declines in the price of intangible capital as the technological
improvement that typically reduces wages and labor demand while boosting overall
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production. In our framework, these declines in the price of intangible capital map to re-
ductions in the prices of AI computation, driven by Al productivity gains. Consequently,
the labor demand in the general goods sector contracts even as output in that sector rises.
In this way, our varying-Z model replicates the economic patterns that Hampole et al.
(2025) and Acemoglu (2025) highlight.

Analysis of Figure Varying D

We next examine the impact of Al adoption on economy, where Al adoption is measured
by the availability of data for AI computation or the number of data scientists who
facilitate the use of Generative Al In our model, this is captured by the data process D.
Several key observations emerge. First, as D increases, the labor allocated to traditional
goods production L¢ decreases, indicating a reallocation of human resources to Al-related
activities. Second, the profitability of both the general goods and Al sectors increases
with D, underscoring the economic gains associated with investments in data science
and Al capabilities. Finally, the price p and the wage w increase alongside D, reflecting
the higher value of labor and the final product when advanced Al technologies are fully
integrated into production processes.

III.c. Empiricial Study

We have seen in the static simulation that the change of v and Z drives the economy to a
new equilibrium. We could test if the real world behaves like our model. Our model is
not limited to LLM but we are focusing on Chat GPT for now. The advent of GPT 3.5
in November 2022 is a huge event. It can be viewed as the change of 7, the elasticity of
the substitute. After GPT 3.5, each version of GPT could be reviewed as a result of the
increase in y. Furthermore, the DeepSeek shock could be reviewed as an increase in Z.
However, the DeepSeek shock is relatively new and the only variable we can observe
is stock prices. When 7 increases, in the last subsection we show that productivity,
profitability, wage, shadow price, labor allocation, and other economic variables change
accordingly. Empirically, we could do casual inference to see whether it is true in the
real world by doing a random discontinuity test. After that, we could calibrate our static
model parameters using the moment conditions at the break point.
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IV. Dynamic EQuIiLiBRTuM MODEL

We build a general equilibrium model to investigate the role of Al productivity im-
provement, investment in data, and investment on capital on asset prices in Al economy.
Solving the planner’s problem is sufficient when the second welfare theorem holds. This
model has three dynamics, which are (1) capital of the general goods sector; (2) capital
of Al sector; (3) data or knowledge storage in the general goods sector.

IV.a. Households

There exists a continuum of identical households that maximize recursive utility V;
over sequences of consumption Ci.o and leisure Ni.. The Epstein-Zin preference in
continuous time is defined by

1
o0 1-p T—p
V= [5 /O exp(—07) (CrseN/ ) dr} . ©)

We solve the special case where p = 1, where the recursive preference becomes time
separable:

Vi=6 /O exp(—67) log (CrieN/, ) d. @)

IV.b. Al Sector

The Al sector provides X; units of Al computations to general goods sector for production
using sector specific capital K, and labor L,

Xy = ZK§ L)~ (8)

We assume that Al productivity shocks are exogenous. A positive Al productivity shock
means that the Al sector could provide more Al computations given the same amount of
labor and capital. Instead of modeling Z; as a dynamic, we merge the randomness of Al
productivity into the capital process K ;.

The stock of productive capital K,;, following conventional asset pricing setting,
evolves as

It Ka [ ot 2
K. =Kt | — R 2 dt + K, 10,dW?.
a,t at < Ma + Ka,t 5 (Ka,t> ) + Ky 10, f )
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The new investment I, ;, increases the capital stock K, subject to an adjustment cost
captured by the curvature parameter x,. The shock to Al capital contains both capital
quality shock and technology shock.

Al sector sells AI computation at a competitive price p; and hire labor at wage w; to

maximize their market value:

o0 7-[ _
Sut = E; / 7T (pSZKglsL;,S“ _ wsLa,s) ds (10)
t T

IV.c. General goods Sector

The general goods sector produces consumption goods Y; with three factors, sector
specific capital Kg ¢, human labor L¢;, and Al agent IL; following the Cobb-Douglass
technology. All production is used for consumption, investment in capitals of two sectors,
and investment in data:

1-g
7

AKE LT + (1= )L]] 7 = Crt+ Igr+ s + Iy (11)

We assume that the total productivity factor A is constant. The stock of productive
capital, Ky, evolves as

It xg [ Igr\?
gt g gt
ng,t = Kg,t <—“I/lg + @ - ? (@) ) dt + Kg,tO'gdW;g, (12)

which is similar to the Al sector capital evolution.

We treat the data as the by-product of production following Farboodi and Veldkamp

(2021). The process of data D; captures the stock of knowledge or data and evolves as

( Iy Y4 > h D
dDy = —{Ddt + o | === | Didt+opDidWy, (13)
D: Dy

where 0 < i1 < 1 captures spillover effects of data. Our setting is the continuous
extension of Section 9.1 in Baley and Veldkamp (2025). The investment in data Ip;
is the endogenized "data savviness" that measures the eagerness to collect data from
production activities, and %ft characterizes the data feedback loop and the "by-product"
feature that data can be perceived. While we will solve a social planner’s problem,
this evolution equation potentially includes an externality associated with non-rivalry
property. The term o,dW; reflects an exogenous stochastic inflow of information about

20



the future likelihood of a technological advance. In each period, firms hire labor at wage

w; and purchase Al computation to maximize their value

o 7T ﬂ
Set = Ei /t ;i (AKQS [ng,s + (1= LY —wsLgs — sts> ds. (14)

A common practice in the literature on production-based asset pricing is the AK
production function, where capital is interpreted broadly and incorporates human capital,
organizational capital, and intangible assets Hansen et al. (2024). However, we separate
labor and data from capital because labor allocation and data usage are two key features
in Al economy different from the Industrial Revolution.

V. MODEL SOLUTION

V.a. Social Planner’s Problem
In the two sector Al economy model, we define three state variables:
{Kg,tl K\a,t/ ﬁt}/ (15)

where the variable with hat means logarithm of that variable. Three inter-temporal
choices are three investments in capitals and data and two labor allocation choices

gt a,t D,t
{F: /t, l;:a/t, K ; }/{ g,ts Ll,t} ( )

When p = 1, the H]JB equation planner solves is

1-p
dlog (Ath [lL;’t + Q=)L) —Igr— Lo — ID,t) + ¢plog Ny — oV

Kg/t ?
oV, I k (L \> o2 2V, o,
+—— —uﬁﬂ——(“'f) _Ga) OV ol
0K, ¢ Kot 2 \ Ky 2 oK, ¢ aKtlz,t 2

2

D

2

oV, In; Kot Y \¥' o 2V, lopl?
Tal —C+¢o(—D't—g’t—t> ~ %) 4 2Vi_lol
: oD; oD, 2

L Lat K<1g,t)2_‘7§>+ Vi |ogl?
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First order condition of inter-temporal decisions:

A7 (1 - Kﬁ> _ R (17)

0K ¢ Kg s Ct’

th ( Iat ) Kat
= 1—x—)=6——, 18
oK, ¢ Kot Ct (18)

Vi (Ip \"" ! (Ker Y\ K
poys 22t (o2 e Y Y (19)
oD; \ Kgt Dy Dy Ct

V.b. Household FOC

The decision about the labor supply of households is intratemporal and depends on
current consumption C; and wage w;. The optimal leisure time is to set the FOC of the
value function with respect to N; equal to zero. The first-order derivative of consumption
w.r.t. labor supply is wage.

C
1—Lgy— Lot = Ny = "JJZ (20)

V.c. General Goods Sector FOC

General Goods sector decide how much Al computation to use in production. The FOC
is intratemporal:

]Lt ,Y _1
Ye- (1=B)(1—1)(1-0) L) & e (21)
Labors are hired at a competitive wage w;. The FOC w.r.t wage is
Lot N7
Yi-(1—B) 1, Loy =wr, (22)
(1- zx)thtL;,tl = wy. (23)

22



VI. ASssSET PRICES

VIl.a. Stochastic Discount Factor

For log utility, the stochastic discount factor is

-1
T = exp(—0t)o (CtNth> . (24)
The SDF can be written as
% = —T’f’tdt — /\a,tde - )\g,tdWZg - /\D/tthD, (25)
where
Y}
Agt = /36% (26)
LA\7Y,
Aap=ay(1—p)1—=0)(1—-P) () =0a (27)
L:) C
B L\ Y;
/\le = p(l — l) (1 — IB) (L_t> aUD, (28)
and the risk free rate is
. ]. Yt 2 2
s =0+ g @)
1 Yt ]Lt Y Lg,t 7
set-pa-o (§) () +a-pa-o @)
- [0*0D + a7 (1 — p)?07) (31)

We got the same results aligning with the interest rate observation given by Chow et al.
(2024) . When Al replaced more human labor in the general goods sector or human

. . . . L;L
labor becomes easier to substitute by Al, the real interest rate increases as %, thg” and
t

7 increases.

VILb. Sector Valuation

The firm chooses the optimal investment to maximize the firm’s values. The Euler
equation is

0= NtHi,tdf + E; [d(TL’tSi,t)], (32)
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where

1 dr dr
~Eild(ms;)] = Ei[S; t—* +dS; + —fdsl n (33)
aS ot aSz t aSl t
=[—7Sit — AapOn—= — Agt0g—=" — Ap 10D —= (34)

[ fout aaKa,t & gath t

SRR (R R (12f> -3 ¢S ol (35)
K, 7 Kgr 2 \ Ky 2 0K, 0K, 2
9S; ; L « (IM)Z o2 S |oul?

+ /\, - + —_— — = . - o + ~ ,/\ 36
oK, ( M Ky " 2\Ker) T2 ) TR, 40K, 2 36)
as g IP (IDngt Yt>¢1 . ﬁ + azsi,t |0’D|2}dt (37)
aD Ket Dt Dy 2 oD; D] 2 '

The dividends of two sectors are
1-B
g = AKE 1LY + (1= )L]] 7 —wilgs — piXe, (38)
ot = prZKG Lyt — wiLa. (39)

VIc. Example Economy

We plot the impulse responses on the productivity shock in the Al sector. For simple
illustration, we adopt the processes from the existing asset pricing literature. The
subjective discount rate is set to § = 0.01. Capital processes are aligned with Barnett et al.
(2024):

pe =0.035 k=7, 0,=001,

and for the data process we use
(=0, =01, ¢ =05 op=0.0078.

Furthermore, reflecting that the capital of the Al-sector depreciates more quickly com-
pared with the general goods sector, we set

e =0.05, x,=6, o0, =0.01

These parameterizations serve as our baseline calibration; we plan to refine or formally
calibrate them in future work.
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Figure VI.1: Simulated values for the two sectors.

We set the simulation starting values to I/<\g,0 =2 and Dy = 0.1. In order to show the
impact of the Al productivity shock, we set K, o = {0.5,1} to see the difference between
two simulations.

Positive productivity shocks can decrease the value of the Al sector and the general
goods sector shown in the figure (VI.1). The improvement in productivity causes
overcapacity and affects the firm values of the Al sector aligned with Jensen (1986).

Our numerical results explain the recent DeepSeek shock, which is major algorithmic
breakthroughs that reduce the cost of Al training. Following the launch of DeepSeek R1,
the value of the Al sector declined — for example, the price of NVIDIA’s stock fell around
20%. By lowering training expenses, these shocks can initially appear beneficial for the
Al sector; however, our analysis suggests that firm values in the Al sector may actually
decline substantially, as lower entry barriers and increased competition may erode future
profitability. The general goods sector experiences only a modest reduction in firm value
due to its comparatively indirect exposure to Al innovation.

Meanwhile, the decline in AI computation costs stimulates hiring in the Al sector
at the expense of traditional production, resulting in a short-term boost in overall labor
demand as workers shift from general goods to Al-related tasks. A positive shock to Al
productivity crowds out data investment in the general goods sector. As firms become
more efficient with Al, they allocate fewer resources to data, which slows the pace of
data accumulation.
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Figure VI.2: Competitive wage, price of Al computation, and data.

VII. CONCLUSION

Our analysis underscores that Al's impact on the economy transcends mere technological
progress and profit optimization. Through the lens of viewing Al as a distinct factor of
production, combining advanced computation and specialized data, we capture both
the efficiency gains and the profound structural shifts that emerge when Al-based labor
partially displaces human labor. This framework is utilized to quantitatively understand
its broader consequences, particularly for labor markets, data usage, and valuations
across sectors.

A central takeaway is that increases in Al efficiency, while potentially catalyzing
higher overall productivity, can paradoxically erode long-term valuations. Our finding
suggests that intensified competition in the Al sector appears to flatten or even reverse
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the expected gains in firm value, revealing that technology-driven expansions may create
fertile ground for overinvestment or unsustainable price dynamics. Meanwhile, the
valuations of the general goods sector exhibit greater resilience precisely because their
exposure to Al disruptions is indirect. This interplay highlights the importance of
modeling cross-sector feedback loops rather than assessing each sector in isolation.

Our results also shed light on the effects of the labor market. On the one hand, a
rapid surge in Al capabilities can raise wages by reallocating workers to high-demand
activities, echoing the idea that complementary labor skills, particularly around data
science, remain scarce resources. On the other hand, if the Al capacity for replace human
labor becomes too powerful, wages can be suppressed, especially for tasks that become
rapidly automatable. These complex labor dynamics reflect the delicate balance between
the continued relevance of human capital and the disruptive potential of AL

Our exploration of "DeepSeek shocks’, sudden breakthroughs that dramatically lower
Al training costs, reveals that short-term efficiency gains may come at the expense of
dampening future investment in data quality and related infrastructure. As computation
becomes cheaper and more powerful, firms may find structured data less urgent, thereby
reshaping how resources are allocated across production activities.

In summary, our theoretical framework clarifies how Al’s transformative role in pro-
duction extends beyond efficiency to shape wage trajectories, asset valuations, and data
investment. These results can guide policymakers and stakeholders in anticipating the
ripple effects of emerging Al capabilities. Ultimately, navigating the ongoing integration
of Al into society requires a holistic view that reconciles efficiency with equity, ensuring
that innovative progress does not inadvertently exacerbate labor market inequalities or

undermine the resilience of diverse economic sectors.
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VIII. APPENDIX

A. NEURAL NETS IMPLEMENTATIONS

We apply the deep Galerkin method - policy improvement algorithms (DGM-PIA) to
solve the nonlinear HJB equation with FOCs following Barnett et al. (2023). There are
intratemporal FOCs that are unique in our model settings, and we add those FOCs into
the loss function of the control iteration steps. For the networks used to approximate both
the value functions and the optimal controls, we use feedforward neural networks with
4 hidden layers of width 32 and tanh activation function for hidden layers and sigmoid
for the output layer. To train the neural nets, we run 200000 epochs with a batch size of
32. The learning rates are 40e~> and we use the ADAM optimizer proposed in Kingma
and Ba (2014). For more details, visit our GitHub repository at GitHub Repository.
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